اولین باره که به کاهو میای؟ راهنمای سایت رو حتما بخون!

ورود ثبت‌نام راهنما درباره‌ی کاهو
پرسش‌ها برچسب‌ها کاربر‌ها سوال بپرسید!

آمار پرسش:

  • پرسیده شده: 2019-08-18 03:32:00 -0500
  • مشاهده شده: 255 بار
  • بروز شده: 2019-08-26 10:11:06 -0500

پرسش‌های مشابه:

تعداد جواب های معادله ${1\over x}+{1\over y}={1\over n}$ در دستگاه اعداد صحیح

تعداد کلمات n حرفی از a,b,c,d

n نفر با کلاه های قرمز و آبی و حدس زدن بیشترین تعداد درست

سوال 3 روز اول مرحله دوم چهارمین المپیاد کامپیوتر ایران

برابر بودن یا نبودن تعداد اعداد زوج و فرد

یافتن تعداد مستطیل های یک شبکه نقطه ای

نکاتی در مورد نوشتن پاسخ:

در این قسمت می‌تونی به یک پرسش پاسخ بدی. اگه می‌خوای در مورد پرسش بحث و اظهار نظر کنی از قسمت «ثبت نظر» استفاده کن.
پاسخت رو دقیق و کامل بنویس، از عکس استفاده کن و اگه لازمه به منابع (کتاب یا سایت) ارجاع بده.
اگه پرسش یا پاسخ‌ها مفید هستند حتما بهشون رای بده تا پرسش‌ها و پاسخ‌های خوب مشخص بشن.

استفاده از ویرایشگر:

توی قسمت پیش‌نمایش می‌تونی ببینی متنی که نوشتی چجوری روی سایت دیده میشه.
خیلی مهم: برای اینکه به خط بعد بری باید دوتا Enter بزنی.
می‌تونی از تگ‌های معمولی و ساده‌ی html هم استفاده کنی.
با دکمه‌هایی که بالای ویرایش‌گر قرار دارند کلی کار می‌شه کرد. از عکس‌گذاشتن بگیر تا لیست شماره‌دار. حتما امتحان‌شون کن.

علائم ریاضی:

برای نوشتن علائم ریاضی می‌تونی از Mathjax استفاده کنی. راهنمای Mathjax رو از سایت math.stackexchange بخون.
برای نوشتن عبارت ریاضی وسط جمله، اون عبارت رو بین دوتا $ قرار بده.
برای نوشتن عبارت ریاضی تو یه خط جدید اون رو بین دوتا $$ قرار بده.

فرض کنید S اجتماع تعدادی مجموعه های متناهی و k عددی ثابت باشد...

3

فرض کنید S اجتماع مجموعه های متناهی $A1,..An $ و k عددی ثابت باشد که $ 1<=k و k<=n $

و اجتماع هر k تا از $Ai$ ها برابر S باشدولی اجتماع هیچ k-1 تا از $Ai$ ها برابر S نباشد

ثابت کنید تعداد اعضای S بزرگتر مساوی از $ {n \choose k-1} $ هست

تناظر-یک-به-یک
2019-08-18 03:32:00 -0500
صفر و یک 979 ● 8 ● 15 ● 20
پاک‌کردن   ویرایش سوال

1 پاسخ

3

خب برای راحتی کار صرفا یه تابع تعریف میکنیم که ورودی هاش زیرمجموعه های k-1 عضوی از مجموعه {A1 ,A2......An} و خروجیش از زیرمجموعه های مجموعه اعضای S عه. تابع ما به این صورت عمل میکنه که هر زیرمجموعه k-1 عضوی که بهش بدین اون اعضایی از S رو بهمون میده که در اجتماع این k-1 تا Ai نیستن.

با توجه به فرض مشخصه زیرمجموعه خروجی همیشه عضو داره و تهی نیست. با توجه به فرض معلومه که هیچ عضوی از S دو بار در زیرمجموعه های خروجی نمیاد( چون اگه میومد K تا پیدا میشدن که شامل این عضو نیستن و این وجود این K تا خلاف فرضه.)

خب با توجه به نتیجه های بالا به هر ورودی ما ( که تعدادشون به اندازه انتخاب k-1 از n عه ) حداقل یه عضو "متمایز" از S نسبت داده شده پس با شمردن تعداد اعضای ورودی هامون ما داریم تعداد اعضای یه زیرمجموعه از اعضای S رو میشمریم که تعدادش کمتر مساوی تعداد کل اعضای S عه به وضوح. پس حکم نتیجه میشه.

2019-08-26 10:11:06 -0500
سوفی 51 ● 1 ● 5
پاک‌کردن   ویرایش پاسخ

پاسخ شما

فقط در صورتی که پاسخی برای این پرسش دارید، آن را اینجا بنویسید و برای بحث کردن از قسمت «ثبت‌ نظر» استفاده کنید. شما می‌توانید قبل از وارد شدن به سایت پاسخ خود را بنویسید. این پاسخ ذخیره می‌شود و زمانی که شما وارد سایت شدید یا ثبت‌نام کردید منتشر می‌شود.

پیش‌نمایش:

کلیه‌ی حقوق این سایت متعلق به کمیته‌ی ملی المپیاد کامپیوتر است.